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Topics	to	be	Covered
Correlations

Enrichment	Analyses

Multiple	Testing	Correction

Regression

Clustering

Dimensionality	Reduction



Introduction
Data	analyses	are	the	product	of	many	tasks

Statistical	Methods

Build	predictive	mathematical	models

Data	preparation

Extracting	structured	data	from	unstructured	data
sources

Merging	data	sources

Ensuring	consistency	of	datasets

Dataset	interpretation

Create	visualizations	to	present	and	communicate
findings

Methods	are	common	in	the	areas	of	informatics,	data
mining,	data	science,	machine	learning,	and	statistics



Statistical	Methods	Flowchart
The	flowchart	below	helps	find	the	right	method	for	a	given	problem

http://scikit-learn.org/stable/tutorial/machine_learning_map/

http://scikit-learn.org/stable/tutorial/machine_learning_map/


Methods	to	be	Covered
Basic	method	will	be	covered	to	build	confidence	with	R
and	the	general	concepts

Dimensionality	Reduction:	Principal	Component
Analysis	(PCA)

Regression:	Linear	regression

Clustering:	Hierarchical	and	K-means	clustering

Classification	will	not	be	covered



Correlating	Two	Vectors
# Make sure the random numbers are always the same 
set.seed(1)

# Generate two sets of 20 random numbers
a <- runif(20); b <- runif(20)

# Calulate the correlation of the two sets
cor.test(a, b)

    Pearson's product-moment correlation

data:  a and b
t = -1.0368, df = 18, p-value = 0.3136
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.6152730  0.2292138
sample estimates:
       cor 
-0.2373854 



Extracting	Values	From	Results
Values	in	results	are	described	in	the	help	?cor.test

A	p-value	is	the	probability	of	seeing	results	as	extreme	as	the	ones	produced	in

an	analysis.

set.seed(1)

a <- runif(20)
b <- runif(20)

results <- cor.test(a, b, method="pearson")
names(results)

[1] "statistic"   "parameter"   "p.value"     "estimate"    
"null.value" 
[6] "alternative" "method"      "data.name"   "conf.int"    

results$p.value

[1] 0.3135682



Over-Representation	(ORA)	and
Enrichment	Analyses
Enrichment	tests	are	widely	used	in	biology	to	determine	if	the	genes

contain	a	trait	more	frequently	than	a	random	sampling	of	genes

Gene	Ontology	(GO)	term	(e.g.	biological	process,	molecular

function,	or	cellular	component)	and	pathways	are	the	most

common	comparisons	made

Several	tools	exist	for	doing	enrichment	analyses

The	tests	are	either	Fisher's	exact	test	or	hypergeometric	test;

these	tests	produce	the	same	results

These	calculations	can	be	done	in	R	using	fisher.test	and
phyper



Enrichment	Analysis
What	is	the	probability	of	randomly	drawing	at	least	4	black	points	in	a

random	sample	of	10	points?

The	concept	of	“black”	could	be	replaced	by	“genes	from	a	given

pathway”	or	“genes	with	a	common	function”



Calculating	an	ORA	(Enrichment)	P-
Value
The	significance	(i.e.	p-value	 )	of	an	over-representation	(enrichment	analysis)	is	calculated
using	a	hypergeometric	test:

where

N:	number	of	studied	genes,

n:	total	number	of	genes	identified	by	a	previous	analysis

K:	total	number	of	genes	in	with	an	annotation

k:	number	genes	previously	identified	genes	with	the	annotation

:	the	number	of	of	ways	of	choosing	 	elements	from	a	set	of	 	elements,	disregarding	order

The	p-value	of	this	test	indicates	the	probability	that	a	random	selection	of	genes	of	the	same	size	as
the	input	gene	set	from	a	population	would	produce	the	same	number	of	observed	annotations	(e.g.	for
a	specific	GO	term	or	pathway)	or	more	in	the	gene	set

P(X ≥ k)

P(X ≥ k) = 1 − ∑
i=0

k−1 ( )( )K
i

N−K
n−i

( )N
n

( )nk k n



Choose	k	from	N	Without	Order
N <- 5
k <- 3
factorial(N) / (factorial(k)*factorial(N-
k))

[1] 10

N <- 5
k <- 3
choose(N, k)

[1] 10



Contingency	Table	for	Enrichment
Analysis

Drawn Not	Drawn Total

Black k=4 K-k=1 K=5

Red n-k=6 N+k-n-K=39 N-K=45

Total n=10 N-n=40 N=50



phyper	or	fisher.test	Example
NOTE:	hitInSample-1	is	nescessary	in	phyper	beacuse	if	lower.tail	is
FALSE,	probabilities	returned	are	P(X	>	k).	Subtract	k	by	1	to	get	P(X	≥	k)	(k

equal	to	or	greater	than).

sampleSize <- 10 # size drawn
hitInSample <- 4 # black drawn
hitInPop <- 5 # all black 
failInPop <- 50-hitInPop # number of red

phyper(hitInSample-1, hitInPop, failInPop, sampleSize, 
lower.tail= FALSE);

[1] 0.004083521

fisher.test(matrix(c(hitInSample, hitInPop-hitInSample, 
sampleSize-hitInSample, failInPop-sampleSize+hitInSample), 
2, 2), alternative='greater')$p.value; 

[1] 0.004083521



Multiple	Testing	Correction	for
Enrichment	Analyses
Enrichment	analyses	often	do	analyses	over	a	large	number
of	molecular	functions	or	pathways

If	we	conduct	many	such	tests,	we	are	likely	to	see	false
positives

A	p-value	significance	cutoff	of	0.05	means	that	we
expect	1	test	out	of	20	to	appear	significant	by	random
chance	(i.e.	a	false	positive)



Multiple	Test	Corrections	Types
Family-Wise	Error	Rate	(FWER):	Controls	the	probability	that	any	test	is	a	false
positive

Bonferroni	Correction:	Very	stringent	correction;	the	significance	cutoff

(i.e.	 )	is	adjusted	by	the	number	of	tests	conducted

	and	10	tests	is	adjusted	to	

False	Discovery	Rate	(FDR):	Controls	the	proportion	of	tests	that	are	false
positives

Widely	used	alternative	to	FWER	(e.g.	Bonferroni	correction)

Example	(next	slide)

α

=αnew
α
n

α = 0.05 α = 0.005



Benjamini-Hochberg	(BH)	FDR
Procedure
Goal:	Calculate	the	new	p-value	cutoff	for	a	given	set	of	p-
values

Assume	

	denotes	the	desired	false	positive	rate,

1.	 Rank	 	p-values	(large	to	small)

2.	 Calculate	q-values

3.	 Select	the	lowest	ranked	p-value	that	is	lower	than	

n = 100, α = 0.05
α

n

q = α ×
n − rank + 1

n
α



Benjamini-Hochberg	Example
p-value Rank q-value p	<	q

0.9 1 0.05*(100-1+1)/100=0.05 FALSE

0.7 2 0.05*(100-2+1)/100=0.0495 FALSE

0.5 3 0.05*(100-3+1)/100=0.049 FALSE

0.04 4 0.05*(100-4+1)/100=0.0485 TRUE

… … … …

0.005 n 0.05*(100-n+1)/100=5E-4 FALSE



Bonferroni	and	Benjamini-Hochberg
Corrections	in	R

pVals <- read.table("files/pvalsExample.txt")
head(pVals$V1, 5)

[1] 0.0001264 0.0001150 0.0000113 0.0000882 0.0000190

pValsAdjusted <- p.adjust(pVals$V1, method="bonferroni")
head(pValsAdjusted, 5)

[1] 0.0039184 0.0035650 0.0003503 0.0027342 0.0005890

# 'fdr' or 'BH' for Benjamini-Hochberg method
pValsAdjusted <- p.adjust(pVals$V1, method="fdr")
head(pValsAdjusted, 5)

[1] 0.00013061333 0.00012293103 0.00002097059 
0.00010126667 0.00002804762



Additional	Enrichment	Analyses
Gene	Set	Enrichment	Analysis	(GSEA):	GSEA	is	one	of	the
best	known	enrichment	analyses

This	method	additionally	takes	into	account	numeric
values	associated	with	the	genes	(e.g.	gene	expression
levels)

They	provide	many	collections	of	“gene	sets”	that	can	be
used	with	GSEA	or	related	methods

http://software.broadinstitute.org/gsea/msigdb

http://software.broadinstitute.org/gsea/msigdb


Regression
Goal:	Find	the	relationship	between	an	independent	variable	and	a	set	of

dependent	variables	(also	known	as	predictor	or	features)

Example:	The	relationship	between	drug	response	(dependent	variable)	and

the	expression	of	some	genes	(independent	variables).

Given	 	observations	each	with	a	response	variable	 	and	 	predictors	(or
features)

Goal:	We	want	to	find	a	set	of	regression	coefficients	 	for	 	to
describe	the	relationship	between	 	and	

	is	the	predicted	value

	are	the	estimated	regression	coefficients	(as	opposed	to	the	true	coefficients)

n y p

Y
X

= ( ,… , , n × 1y1 yn)T
= ( ,… , ), n × pX1 Xp

β x = ( ,… , )x1 xp
y ,… ,x1 xp

= + + + …ŷ β0̂ β1̂x1 β2̂x2

ŷ

β̂



Example	Regression
results <- lm(Petal.Width ~ Petal.Length, data=iris)
summary(results)

Call:
lm(formula = Petal.Width ~ Petal.Length, data = iris)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.56515 -0.12358 -0.01898  0.13288  0.64272 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -0.363076   0.039762  -9.131  4.7e-16 ***
Petal.Length  0.415755   0.009582  43.387  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 
' 1

Residual standard error: 0.2065 on 148 degrees of freedom
Multiple R-squared:  0.9271,    Adjusted R-squared:  
0.9266 
F-statistic:  1882 on 1 and 148 DF,  p-value: < 2.2e-16



Plotting	Regression	Results
par(mai=c(1,1,0,0))
plot(iris$Petal.Length, iris$Petal.Width, pch=".")
abline(results, lwd=2)

# Plot distances between points and the regression line (i.e. residuals)
predictedY <- predict(results)
segments(iris$Petal.Length, iris$Petal.Width, iris$Petal.Length, 
predictedY, col="red")



Interpreting	lm()	Results	Summary
Residuals:	The	difference	between	the	actual	and	predicted	values

Estimate:	Regression	coefficient	estimates

Std.	Error:	Measurement	of	the	variability	of	the	coefficient	estimate.

Lower	is	better

t	value:	Coefficient	score	to	describe	the	importance	of	predictor;

used	to	calculate	the	p-value

Pr(>|t|):	Coefficient	p-value.	Probability	the	predictor	is	NOT	relevant

R-square:	Score	for	evaluating	how	well	the	model	fits	the	data.	Higher

is	better.	This	can	be	adjusted	for	the	number	of	predictors	used	in	the

model.

Values	~0.7	are	of	more	interest,	but	there	is	no	standard	rule

More	information:	http://blog.yhat.com/posts/r-lm-summary.html

http://blog.yhat.com/posts/r-lm-summary.html


Predict	Values	for	New	Inputs	to
Regression	Model

new <- data.frame(Petal.Length=seq(-3, 3, 0.5))
predict(results, new)

         1          2          3          4          5          
6 
-1.6103418 -1.4024641 -1.1945864 -0.9867086 -0.7788309 
-0.5709532 
         7          8          9         10         11         
12 
-0.3630755 -0.1551978  0.0526799  0.2605576  0.4684353  
0.6763130 
        13 
 0.8841907 



Multiple	Regression
formula <- "Sepal.Width ~ Petal.Length + Petal.Width"

y <- iris$Sepal.Width
fit <- lm(as.formula(formula), data=iris[,1:4])
summary(fit) 

Call:
lm(formula = as.formula(formula), data = iris[, 1:4])

Residuals:
     Min       1Q   Median       3Q      Max 
-1.06198 -0.23389  0.01982  0.20580  1.13488 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)   3.58705    0.09373  38.272  < 2e-16 ***
Petal.Length -0.25714    0.06691  -3.843  0.00018 ***
Petal.Width   0.36404    0.15496   2.349  0.02014 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3893 on 147 degrees of freedom
Multiple R-squared:  0.2131,    Adjusted R-squared:  0.2024 
F-statistic:  19.9 on 2 and 147 DF,  p-value: 2.238e-08



Plotting	Multiple	Regression
pred <- predict(fit)

# Add regression between predicted and observed 
fit2 <- lm(pred ~ y)

# Plot predicted versus observed
title <- paste0("Formula: ", formula, "; R-squared: ", round(summary(fit2)$r.squared, 
3))

plot(y, pred, xlim=range(c(y, pred)), ylim=range(c(y, pred)), xlab="observed", 
ylab="predicted", main=title)

# Add regression line
abline(fit2, lwd=2)



Some	Issues	with	Regression
Missing	Data:	What	if	your	data	has	missing	values?

Imputation	can	be	used	to	fill	in	missing	values	using	other	data

points

Too	many	predictors	versus	the	number	of	samples

The	“Curse	of	Dimensionality”	(later	slide)

Regularized	regression	methods	can	be	used	to	select	features	to

be	included	in	the	model

Overfitting:	Will	your	model	work	on	other	datasets?

Excessively	complex	models	(e.g.	having	too	many	predictors)	can

have	poor	predictive	performance	when	tested	on	new	data

Regularized	regression	methods	have	properties	to	avoid

overfitting



Missing	Data
By	default,	lm()	removes	rows	that	contain	missing	values
An	alternative	is	imputation	to	fill	in	missing	values

impute	imputes	using	K-Nearest	Neighbors	(KNN)
Step	1:	Identify	K	number	of	neighbors	based	on
Euclidean	distance

Step	2:	Average	the	values	of	the	neighbors	and	replace
the	missing	value



Basic	Rules	for	Imputation
Should	be	done	when	the	number	of	missing	values	is	small

A	safe	maximum	threshold	is	5%	of	the	total	for	large
datasets

Should	be	done	when	the	imputed	values	are	plausible	for
the	missing	values

Should	be	done	when	it	is	assumed	that	the	missing	values
occur	at	random

If	missing	values	do	not	occur	at	random,	the	data
collection	should	be	investigated	and/or	the	values
should	be	dropped



The	"Curse	of	Dimensionality"
If	the	number	of	predictors	is	greater	than	the	number	of	samples,	it

will	not	be	possible	to	estimate	relevant	regression	parameters	in	the

full	model.

This	is	due	to	the	degrees	of	freedom	in	the	system.

There	are	 	observations	and	 	parameters	(one	regression

coefficient	for	each	predictor	plus	the	intercept)	leaving	

degrees	of	freedom.

Increasing	the	sample	size	provides	more	information	about	the

population	test.

Increasing	the	number	of	predictors	in	the	resulting	model	lowers

the	degrees	of	freedom	available	to	estimate	the	variability	of	the

predictors;	this	increases	the	variance	of	the	regression	coefficient

estimates	and	reduces	confidence	in	the	model.

n p + 1
n − p − 1



LASSO,	Ridge,	and	Elastic	Net
Regularized	Regression
Least	Absolute	Shrinkage	and	Selection	Operator	(LASSO):	Tends	to	produce	sparse

(i.e.	few	predictors)	whereby	the	algorithm	selects	an	arbritary	predictor	among	a	set

of	correlated	ones

Ridge:	Tends	to	select	all	correlated	predictors	with	their	coefficient	values	equal	to

each	other

Elastic	Net	(EN):	Blends	the	concepts	of	LASSO	and	Ridge	regression	to	attempt	to

create	a	model	that	is	both	sparse,	but	also	includes	correlated	predictors

EN	parameter	 	represents	LASSO	regression,	while	 	approaches	Ridge

regression

LASSO,	Ridge,	and	Elastic	Net	regression	are	available	from	the	glmnet	R	package

Sousa	FG	et	al.	DNA	damage	response	alterations	and	its	relation	with	drug

activity	across	the	NCI-60.	DNA	Repair	(2015)	for	example	usage	of	glmnet	and
Elastic	Net

α = 1 α = 0



Clustering
Goal:	Divide	data	into	groups	(clusters),	so	that	group
members	are	more	“similar”	to	each	other	than	to	members
outside	the	group

Example:	Cluster	a	set	of	drugs.	For	drugs	without	a
known	mechanism	of	action	(MOA),	predict	a	potential
MOA	based	on	how	the	unknown	MOA	drugs	cluster
with	known	MOA	drugs

Clustering	differs	from	classification	in	that	in	classification
we	have	known	groups



Hierarchical	Clustering
R	uses	an	agglomerative	(bottom-up)	clustering	approach

Alternative:	Divise	(top-down)	is	similiar	to
agglomerative,	but	in	reverse

Algorithm

1.	 All	points	start	in	their	own	clusters

2.	 At	each	iteration	merge	the	2	most	similar	structures

3.	 Stop	if	there	is	a	single	cluster	containing	all	points,	else
go	to	Step	2



Hierarchical	Clustering	Example
Heatmap	shows	the	expression	of	20	oncogenes	from	20	NCI-60	celllines

dat <- read.table("files/heatmapExample.txt", sep="\t", header=TRUE)
mat <- as.matrix(dat); heatmap(mat, cexCol=0.75)



Cluster	Similarity	(Linkage)
Distances	between	clusters	are	calculated	to	determine
cluster	similarity

Options	of	Cluster	Linkage	Distances

Single:	Distance	between	two	clusters	is	defined	by	the
distance	between	the	two	closest	points.

Average:	Average	of	all	pairwise	distances	between	the
points	in	two	clusters

Complete:	Distance	between	two	clusters	is	defined	by
the	distance	between	the	two	farthest	points.

hclust()	used	by	heatmap()	in	R	uses	the	“complete”
method	by	default



K-Means	Clustering
Algorithm

1.	 A	user-selected	( )	number	of	means	are	randomly	generated	from	the	data

2.	 	clusters	are	created	by	grouping	data	points	to	the	nearest	mean.

3.	 The	centroid	of	the	clusters	becomes	the	new	mean.

4.	 Steps	2	and	3	are	repeated	until	the	clusters	do	not	change	anymore

k
k



K-Means	Clustering	Example
# Retain only the numeric data in the iris dataset
iris_data <- iris[, 1:4]

# nstart: try multiple initial configurations and report the best one
kc <- kmeans(iris_data, 3, nstart=25)

par(mai=c(1,1,0,0))
plot(iris[c("Sepal.Length", "Sepal.Width")], bg=c("red","green3","blue")[kc$cluster], 
pch=21)
points(kc$centers[,c("Sepal.Length", "Sepal.Width")], col=c("red","green3","blue"), 
pch=8, cex=2)



Determine	K-Means	Cluster	Quality

Silhouette	Plot

Horizontal	barplot	is	the

goodness	of	fit	of	sample	within

the	cluster

Longer	is	better

Rightmost	number,	 ,	is	average

length

Average	Silhouette	Guidelines

0.71-1.0:	Strong	clustering

0.51-0.70:	Reasonable	clustering

<	0.50:	Weak	clustering

library(cluster)
dataDist <- dist(iris_data)
si <- silhouette(kc$cl, 
dataDist)

Si

plot(si, col = c("red", 
"green3", "blue"))



Selecting	k	with	Average	Silhouette
library(cluster)
kMax <- 15
avgSi <- rep(0, kMax)

# Average silhouette width
# k: 2 to 15
for(i in 2:kMax){
  results <- 
kmeans(iris_data, 
centers=i)
  si <- 
silhouette(results$cluster, 
dist(iris_data))
  avgSi[i] <- mean(si[, 
"sil_width"])
}

plot(1:kMax, avgSi, 
type="b", pch=19, 
xlab="Number of Clusters 
(k)")
abline(v=which.max(avgSi), 
lty=2)



Compare	Known	Classes	with
Clusters

table(iris$Species, kc$cluster)

              1  2  3
  setosa     50  0  0
  versicolor  0 48  2
  virginica   0 14 36



Differences	between	Hierarchical
and	K-Means	Clustering
Clusters

K-means	produces	a	single	set	of	clusters

Hierarchical	produces	different	clusters	depending	on
where	the	tree	is	cut

Cluster	Number

K-means	requires	the	number	clusters	to	be	set

Hierarchical	clustering	does	not	require	the	number	of
clusters	to	be	set

Speed

K-means	is	faster	than	hierarchical	clustering



Dimensionality	Reduction
Goal:	Seeks	to	reduce	the	dimensions	of	the	data	without
losing	(much)	information.

This	is	possible	if	many	predictors	are	correlated	with
one	another,	and	therefore	redundant.

Principal	Component	Analysis	is	a	method	for	dimension
reduction



What	is	Principal	Component
Analysis	(PCA)
Goal:	PCA	seeks	to	simplify	a	multi-dimensional	(e.g.	one	with	3+	predictors
(features))	dataset

Used	for	feature	extraction

May	reveal	clusters	and	help	validate	clustering	results

Example:	We	have	a	dataset	with	20	dimensions	and	it	may	be	interesting	to
plot	the	data	in	two	dimensions

Results:

Loadings:	Weights	for	the	original	values	to	get	the	component	scores

Component	Scores:	Transformed	values	for	a	given	point

prcomp	and	princomp	can	do	PCA	in	R;	prcomp	is	the	advised	function



What	are	Principal	Components?
Each	“principal	component”	(PC)	is	an	axis	that	captures
the	most	variance

Variance	is	a	measure	of	the	spread	of	data	points;
standard	deviation	is	the	square	root	of	variance

Each	PC	is	a	combination	of	the	original	variables	scaled
by	a	coefficient

Every	PC	explains	some	variance

Each	additional	PC	explains	less	variance	than	the
previous	one

New	coordinate	axes	are	constrained	to	be	perpendicular,
so	the	data	are	de-correlated



PCA	Example
Using	scale=TRUE	is	advisable

prcomp	first	transforms	the	data	by	centering	and	scaling

Centering	is	done	by	subtracting	the	column	means

Scaling	is	done	by	dividing	the	(centered)	columns	of	 	by	their	standard

deviations

x

iris_data <- iris[, 1:4]

pcaResult <- prcomp(iris_data, scale=TRUE)
summary(pcaResult)

Importance of components:
                          PC1    PC2     PC3     PC4
Standard deviation     1.7084 0.9560 0.38309 0.14393
Proportion of Variance 0.7296 0.2285 0.03669 0.00518
Cumulative Proportion  0.7296 0.9581 0.99482 1.00000



PCA	Example	Plots
# First 2 principal 
components (PC)
plot(pcaResult$x, pch=21, 
bg=c("red","green3","blue")
[unclass(iris$Species)]) 

# PC variances
plot(pcaResult, 
type="line", cex.lab=1.5, 
cex.main=1.5, main="")
abline(h=1, lty=3, 
col="red") 



Recovering	the	Original	Data
# Weights (known as loadings)
pcaResult$rotation

                    PC1         PC2        PC3        PC4
Sepal.Length  0.5210659 -0.37741762  0.7195664  0.2612863
Sepal.Width  -0.2693474 -0.92329566 -0.2443818 -0.1235096
Petal.Length  0.5804131 -0.02449161 -0.1421264 -0.8014492
Petal.Width   0.5648565 -0.06694199 -0.6342727  0.5235971

# Original 
iris_data[1,]

  Sepal.Length Sepal.Width Petal.Length Petal.Width
1          5.1         3.5          1.4         0.2

# Transformed 
pcaResult$x[1,]

        PC1         PC2         PC3         PC4 
-2.25714118 -0.47842383  0.12727962  0.02408751 

# Recovered
tmp <- t(t(pcaResult$x %*% t(pcaResult$rotation)) * pcaResult$scale + pcaResult$center)
tmp[1,]

Sepal.Length  Sepal.Width Petal.Length  Petal.Width 
         5.1          3.5          1.4          0.2 



Visualizing	PCA	Results	with	Biplots
Visualizes	the	magnitude	and	sign	of	each	feature's	contribution	to	a	PC

Visualizes	each	observation	in	terms	of	PCs

Closeness	equals	similarity	for	points	and	vectors

biplot(pcaResult, scale=0, cex=.7)



Correlations	between	Vectors
Feature	to	Principal	Component	Correlations

Feature	to	Principal	Component	Contributions

cor(iris_data, pcaResult$x)

                    PC1         PC2         PC3         
PC4
Sepal.Length  0.8901688 -0.36082989  0.27565767  
0.03760602
Sepal.Width  -0.4601427 -0.88271627 -0.09361987 
-0.01777631
Petal.Length  0.9915552 -0.02341519 -0.05444699 
-0.11534978
Petal.Width   0.9649790 -0.06399985 -0.24298265  
0.07535950

tmp <- abs(pcaResult$rotation)
sweep(tmp, 2, colSums(tmp), "/")

                   PC1        PC2        PC3        PC4
Sepal.Length 0.2691897 0.27110474 0.41346137 0.15281309
Sepal.Width  0.1391485 0.66321714 0.14042128 0.07223451
Petal.Length 0.2998493 0.01759269 0.08166552 0.46872700



How	Many	Principal	Components
Should	be	Kept?
Kaiser	criterion

Retain	only	principal	components	that	with	a	variance	greater	than

1

The	variance	of	every	input	variable	is	1	(because	the

scaling/centering),	therefore	only	retain	PCs	with	“stronger”

variances	than	individual	variables.

Simple,	but	less	advisable

Scree	Test

Find	the	place	where	the	smooth	decrease	in	the	variances	levels

off

Multiple	users	may	interpret	the	data	different,	unless	trained	the

same



Getting	Help
Cross-Validated	Stats	Exchange

Part	of	Stack	Overflow

Biostars

http://stats.stackexchange.com/

https://www.biostars.org

http://stats.stackexchange.com/
https://www.biostars.org/

