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Topics to be Covered

e Correlations

e Enrichment Analyses

e Multiple Testing Correction
e Regression

e Clustering

¢ Dimensionality Reduction



Introduction

e Data analyses are the product of many tasks
e Statistical Methods

® Build predictive mathematical models

e Data preparation

m Extracting structured data from unstructured data
sources

® Merging data sources

®m Ensuring consistency of datasets

e Dataset interpretation

m Create visualizations to present and communicate
findings

e Methods are common in the areas of informatics, data



Statistical Methods Flowchart

e The flowchart below helps find the right method for a given problem

m http://scikit-learn.org/stable/tutorial/machine_learning_map/
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http://scikit-learn.org/stable/tutorial/machine_learning_map/

Methods to be Covered

e Basic method will be covered to build confidence with R
and the general concepts

® Dimensionality Reduction: Principal Component
Analysis (PCA)

m Regression: Linear regression

m Clustering: Hierarchical and K-means clustering

m Classification will not be covered



Correlating Two Vectors

# Make sure the random numbers are always the same
set.seed(1)

# Generate two sets of 20 random numbers
a <- runif(20); b <- runif(20)

# Calulate the correlation of the two sets
cor.test(a, b)

Pearson's product-moment correlation

data: a and b
t = -1.0368, df = 18, p-value = 0.3136
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.6152730 0.2292138
sample estimates:
cor

-0.2373854



Extracting Values From Results

e Valuesin results are described in the help 7cor.test

e A p-valueis the probability of seeing results as extreme as the ones produced in
an analysis.

set.seed(1l)

a <- runif(20)
b <- runif(20)

results <- cor.test(a, b, method="pearson")

names(results)

[1] "statistic” "parameter" "p.value" "estimate"
"null.value”

[6] "alternative" "method" "data.name"” "conf.int"

results$p.value

[1] ©0.3135682



Over-Representation (ORA) and
Enrichment Analyses

e Enrichment tests are widely used in biology to determine if the genes
contain a trait more frequently than a random sampling of genes

» Gene Ontology (GO) term (e.g. biological process, molecular
function, or cellular component) and pathways are the most
common comparisons made

e Several tools exist for doing enrichment analyses

m The tests are either Fisher's exact test or hypergeometric test;
these tests produce the same results

= These calculations can be done in Rusing fi1sher.test and
phyper



Enrichment Analysis

e What is the probability of randomly drawing at least 4 black pointsin a
random sample of 10 points?

m The concept of “black” could be replaced by “genes from a given
pathway” or “genes with a common function”
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Calculating an ORA (Enrichment) P-
Value

The significance (i.e. p-value P(X = k)) of an over-representation (enrichment analysis) is calculated
using a hypergeometric test:
k—1 (K)\ /N-K
() ()

P(sz):l-Z

i=0 (g)

where

e N: number of studied genes,

e n:total number of genes identified by a previous analysis

e K:total number of genes in with an annotation

e k: number genes previously identified genes with the annotation

° (E ) : the number of of ways of choosing kK elements from a set of n elements, disregarding order
The p-value of this test indicates the probability that a random selection of genes of the same size as

the input gene set from a population would produce the same number of observed annotations (e.g. for
a specific GO term or pathway) or more in the gene set



Choose k from N Without Order

N <- 5 N <- 5

k <- 3 k <- 3
factorial(N) / (factorial(k)*factorial (N- choose(N, k)
k))

17 10 [1] 10



Contingency Table for Enrichment
Analysis

....................................................................................................................................................................................................................................



phyper or fisher.test Example

e NOTE:hi1tInSample-1isnescessaryinphyper beacuseif lower.tailis
FALSE, probabilities returned are P(X > k). Subtract k by 1 to get P(X = k) (k
equal to or greater than).

sampleSize <- 10 # size drawn
hitInSample <- 4 # black drawn

hitInPop <- 5 # all black

failInPop <- 50-hitInPop # number of red

phyper(hitInSample-1, hitInPop, faillInPop, sampleSize,
lower.tail= FALSE);

[1] 0.004083521

fisher.test(matrix(cChitInSample, hitInPop-hitInSample,
sampleSize-hitInSample, failInPop-sampleSize+hitInSample),
2, 2), alternative="'greater')$p.value;

[1] 0.004083521



Multiple Testing Correction for
Enrichment Analyses

¢ Enrichment analyses often do analyses over a large number

of molecu

¢ |[fweconc
positives

ar functions or pathways

uct many such tests, we are likely to see false

m A p-value significance cutoff of 0.05 means that we
expect 1 test out of 20 to appear significant by random
chance (i.e. a false positive)



Multiple Test Corrections Types

e Family-Wise Error Rate (FWER): Controls the probability that any test is a false
positive

m Bonferroni Correction: Very stringent correction; the significance cutoff

(i.e. ) is adjusted by the number of tests conducted

o
Opew = —

= 0 = 0.05 and 10 tests is adjusted to a. = 0.005

e False Discovery Rate (FDR): Controls the proportion of tests that are false
positives

= Widely used alternative to FWER (e.g. Bonferroni correction)

s Example (next slide)



Benjamini-Hochberg (BH) FDR
Procedure

¢ Goal: Calculate the new p-value cutoff for a given set of p-
values

e Assumen = 100, a = 0.05

m O denotes the desired false positive rate,

1. Rankn p-values (large to small)

2. Calculate g-values
n —rank + 1

q=ax
n

3. Select the lowest ranked p-value that is lower than O



Benjamini-Hochberg Example

.............................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................

0.7 2 0.05%100-2+1)/100=0.0495  FALSE

0.5 3 0.05%(100-3+1)/100=0.049

.............................................................................................................................................................................................................................................................................................................

0.04 4 1 0.05*(100-4+1)/100=0.0485 TRUE

.............................................................................................................................................................................................................................................................................................................

-
>
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................................................................................................................................................................................................................................................................................................................



Bonferroni and Benjamini-Hochberg
CorrectionsinR

pVals <- read.table("files/pvalsExample.txt™)
head(pVals$Vl, 5)

[1] 0.0001264 0.0001150 0.0000113 0.00003882 ©.0000190

pValsAdjusted <- p.adjust(pVals$Vl, method="bonferroni")
head(pValsAdjusted, 5)

[1] 0.0039184 0.0035650 0.0003503 0.0027342 ©.0005890

# 'fdr' or 'BH' for Benjamini-Hochberg method

pValsAdjusted <- p.adjust(pVals$Vl, method="fdr")
head(pValsAdjusted, 5)

[1] 0.00013061333 0.00012293103 0.00002097059
0.00010126667 0.00002804762



Additional Enrichment Analyses

e Gene Set Enrichment Analysis (GSEA): GSEA is one of the
best known enrichment analyses

® This method additionally takes into account numeric
values associated with the genes (e.g. gene expression
levels)

m They provide many collections of “gene sets” that can be
used with GSEA or related methods

m http://software.broadinstitute.org/gsea/msigdb


http://software.broadinstitute.org/gsea/msigdb

Regression

e Goal: Find the relationship between an independent variable and a set of
dependent variables (also known as predictor or features)

m Example: The relationship between drug response (dependent variable) and
the expression of some genes (independent variables).

Given n observations each with a response variable y and p predictors (or
features)

Y =(yq,... ,yn)T, nx 1
X=(X1,...,Xp), nxp

Goal: We want to find a set of regression coefficients [3 forx = (Xq,..., Xp) to
describe the relationship betweeny and X1, ... ,Xp

g\’: fg\o + [§\1X1 +f§\2X2 + ...

o §\7 is the predicted value

A
y 3 R - RN "'I‘\f\ f\l"":l’“‘\'l‘ﬁf‘l ﬁﬁﬁﬁﬁﬁﬁ : ﬁﬁﬁﬁﬁ 'F‘F:I‘:hl’\"‘l‘ I ﬁﬁﬁﬁﬁﬁﬁﬁ f‘l "'f\ 'l‘l‘\f\ "'IF'I 1 "\ I‘I\A'F'F:I‘:f\n'l'l‘\



Example Regression

results <- Im(Petal.Width ~ Petal.Length, data=1iris)

summary(results)
Call:
Im(formula = Petal.Width ~ Petal.lLength, data = 1iris)
Residuals:
Min 1Q  Median 3Q Max

-0.56515 -0.12358 -0.01898 0.13288 0.04272

Coefficients:

Estimate Std. Error t value Pr(>l1tl)
(Intercept) -0.363076 0.039762 -9.131 4.7e-16 ***
Petal.Length 0.415755 0.009582 43.387 < 2e-16 ***
Signif. codes: 0@ '"***' @0.001 '**' ©0.01 '*' 0.05 '." 0.1 '
"1

Residual standard error: 0.2005 on 148 degrees of freedom
Multiple R-squared: 0.9271, Adjusted R-squared:
0.9266

F-statistic: 1882 on 1 and 148 DF, p-value: < 2.2e-16



Plotting Regression Results

par(mai=c(1,1,0,0))
plot(iris$Petal.Length, iris$Petal.Width, pch=".")
abline(results, 1wd=2)

# Plot distances between points and the regression line (i.e. residuals)
predictedY <- predict(results)

segments(iris$Petal.Length, iris$Petal.Width, iris$Petal.Length,
predictedY, col="red")
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Interpreting Im() Results Summary

e Residuals: The difference between the actual and predicted values
e Estimate: Regression coefficient estimates

e Std. Error: Measurement of the variability of the coefficient estimate.
Lower is better

e tvalue: Coefficient score to describe the importance of predictor;
used to calculate the p-value

o Pr(>|t|): Coefficient p-value. Probability the predictor is NOT relevant

e R-square: Score for evaluating how well the model fits the data. Higher
Is better. This can be adjusted for the number of predictors used in the
model.

m Values ~0.7 are of more interest, but there is no standard rule

e More information: http://blog.yhat.com/posts/r-Im-summary.html


http://blog.yhat.com/posts/r-lm-summary.html

Predict Values for New Inputs to
Regression Model

new <- data.frame(Petal.Length=seq(-3, 3, 0.5))
predict(results, new)

1 2 3 4 5
o
-1.6103418 -1.4024041 -1.1945804 -0.980/7/080 -0.7788309
-0.5709532

/ 8 9 10 11
12

-0.3630755 -0.1551978 0.0526799 0.20055706 0.40684353
0.6703130

13
0.8841907



Multiple Regression

formula <- "Sepal.Width ~ Petal.Length + Petal.Width"

y <- 1ris$Sepal.Width
fit <- 1Im(as.formula(formula), data=iris[,1:4])

summary(fit)
Call:
Ilm(formula = as.formula(formula), data = iris[, 1:4])
Residuals:
Min 1Q  Median 3Q Max

-1.00198 -0.23389 0.01982 0.20580 1.13488

Coefficients:

Estimate Std. Error t value Pr(GIltl)
(Intercept) 3.58705 0.09373 38.272 < 2e-16 ***
Petal.lLength -0.25714 0.00691 -3.843 0.00018 ***
Petal .Width 0.36404 0.15496 2.349 0.02014 *

Signif. codes: @ '"***' @.001 '**' 0.01 '*' 0.05 '." 0.1 ' " 1

Residual standard error: 0.3893 on 147 degrees of freedom
Multiple R-squared: 0.2131, Adjusted R-squared: 0.2024
F-statistic: 19.9 on 2 and 147 DF, p-value: 2.238e-08



Plotting Multiple Regression

pred <- predict(fit)

# Add regression between predicted and observed
fit2 <- Im(pred ~ y)

# Plot predicted versus observed
title <- paste@("Formula: ", formula,

3))

plot(y, pred, xlim=range(c(y, pred)), ylim=range(c(y, pred)), xlab="observed",
ylab="predicted", main=title)

: R-squared: ", round(summary(fit2)$r.squared,

# Add regression line
abline(fit2, lwd=2)

Formula: Sepal.Width ~ Petal.Length + Petal.Width; R-squared: 0.213
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Some Issues with Regression

e Missing Data: What if your data has missing values?

m |[mputation can be used to fill in missing values using other data
points

e Too many predictors versus the number of samples

m The “Curse of Dimensionality” (later slide)

m Regularized regression methods can be used to select features to
be included in the model

e Overfitting: Will your model work on other datasets?

m Excessively complex models (e.g. having too many predictors) can
have poor predictive performance when tested on new data

s Regularized regression methods have properties to avoid
overfitting



Missing Data

e By default, Lm() removes rows that contain missing values
¢ An alternative is imputation to fill in missing values
= 1mpute imputes using K-Nearest Neighbors (KNN)

m Step 1: Identify K number of neighbors based on
Euclidean distance

m Step 2: Average the values of the neighbors and replace
the missing value



Basic Rules for Imputation

¢ Should be done when the number of missing values is small

m Asafe maximum threshold is 5% of the total for large
datasets

e Should be done when the imputed values are plausible for
the missing values

¢ Should be done when it is assumed that the missing values
occur at random

m |[f missing values do not occur at random, the data
collection should be investigated and/or the values
should be dropped



The "Curse of Dimensionality"

¢ |fthe number of predictors is greater than the number of samples, it

will not be possible to estimate relevant regression parameters in the
full model.

m Thisis due to the degrees of freedom in the system.

= There are n observations and p + 1 parameters (one regression

coefficient for each predictor plus the intercept) leavingn — p — 1
degrees of freedom.

m |[ncreasing the sample size provides more information about the
population test.

» [ncreasing the number of predictors in the resulting model lowers
the degrees of freedom available to estimate the variability of the
predictors; this increases the variance of the regression coefficient
estimates and reduces confidence in the model.



LASSO, Ridge, and Elastic Net
Regularized Regression

e [east Absolute Shrinkage and Selection Operator (LASSO): Tends to produce sparse
(i.e. few predictors) whereby the algorithm selects an arbritary predictor among a set

of correlated ones

e Ridge: Tends to select all correlated predictors with their coefficient values equal to

each other

e Elastic Net (EN): Blends the concepts of LASSO and Ridge regression to attempt to

create a model that is both sparse, but also includes correlated predictors

m EN parameter o = 1 represents LASSO regression, while o0 = 0 approaches Ridge

regression

e LASSO, Ridge, and Elastic Net regression are available from the glmnet R package

m Sousa FG et al. DNA damage response alterations and its relation with drug
activity across the NCI-60. DNA Repair (2015) for example usage of glmnet and
Elastic Net



Clustering

e Goal: Divide data into groups (clusters), so that group
members are more “similar” to each other than to members

outside the group

s Example: Cluster a set of drugs. For drugs without a
known mechanism of action (MOA), predict a potential
MOA based on how the unknown MOA drugs cluster
with known MOA drugs

e Clustering differs from classification in that in classification
we have known groups




Hierarchical Clustering

e Ruses an agglomerative (bottom-up) clustering approach

m Alternative: Divise (top-down) is similiar to
agglomerative, but in reverse

e Algorithm
1. All points start in their own clusters

2. At each iteration merge the 2 most similar structures

3. Stop if thereis a single cluster containing all points, else
go to Step 2



Hierarchical Clustering Example

e Heatmap shows the expression of 20 oncogenes from 20 NCI-60 celllines

dat <- read.table("files/heatmapExample.txt", sep="\t", header=TRUE)
mat <- as.matrix(dat); heatmap(mat, cexCol=0.75)
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Cluster Similarity (Linkage)

e Distances between clusters are calculated to determine
cluster similarity

e Options of Cluster Linkage Distances

m Single: Distance between two clusters is defined by the
distance between the two closest points.

m Average: Average of all pairwise distances between the
points in two clusters

m Complete: Distance between two clusters is defined by
the distance between the two farthest points.

e hclust() used by heatmap() in R uses the “complete”
method by default



K-Means Clustering

e Algorithm
1. Auser-selected (k) number of means are randomly generated from the data
2. k clusters are created by grouping data points to the nearest mean.
3. The centroid of the clusters becomes the new mean.

4. Steps 2 and 3 are repeated until the clusters do not change anymore

O @) »
0
o s IS ¢ j
. o
0
. O

om0
0O
@

N = B D\%D\j{/

OO
Step 1 Step 2 Step 3 Final Clustering




K-Means Clustering Example

# Retain only the numeric data in the 1iris dataset
iris_data <- iris[, 1:4]

# nstart: try multiple initial configurations and report the best one
kc <- kmeans(iris_data, 3, nstart=25)

par(mai=c(1,1,0,0))
plot(iris[c("Sepal.Length", "Sepal.Width")], bg=c("red","green3","blue")[kc$cluster],

pch=21)
points(kc$centers[,c("Sepal.Length", "Sepal.Width")], col=c("red","green3","blue"),
pch=8, cex=2)
)
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Determine K-Means Cluster Quality

library(cluster) plot(si, col = c("red",
dataDist <- dist(iris_data) "green3"”, "blue"))

si <- silhouette(kc$cl,

dataDist)

Silhouette plot of (x = kc$cl, dist = dataDist)
n =150 3 clusters C;

e Silhouette Plot 1yl aves 5

1: 50 | 0.80

m Horizontal barplot is the
goodness of fit of sample within
the cluster

2: 62| 042

m Longer is better

= Rightmost number, S;, is average

3: 38| 045

ength

o _
o
(=]
N

0.4 0.6 0.8 1.0

e Average Silhouette Guidelines |

Average silhouette width : 0.55

m 0.71-1.0: Strong clustering
m 0.51-0.70: Reasonable clustering

m < GO \Nealr chiicterino



Selecting k with Average Silhouette

library(cluster) plot(1l:kMax, avgSti,
kMax <- 15 type="b", pch=19,
avgSit <- rep(@, kMax) élgbi"Number of Clusters
L( 11
# Average silhouette width abline(v=which.max(avgSi),
# k: 2 to 15 lty=2)
for(1 1n 2:kMax){
results <-
kmeans(iris_data, .
centers=1) i

S1 <-
silhouette(results$cluster,
dist(iris_data))

avgSi[1i]| <- mean(si|,
"sil_width"])
¥
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Compare Known Classes with
Clusters

table(iris$Species, kc$cluster)

1 2 3
setosa 50 0 0O
versicolor 0 48 2
virginica 0 14 36



Differences between Hierarchical
and K-Means Clustering

o Clusters
m K-means produces a single set of clusters

m Hierarchical produces different clusters depending on
where the treeis cut

e Cluster Number
m K-means requires the number clusters to be set

m Hierarchical clustering does not require the number of
clusters to be set

e Speed
s K-means is faster than hierarchical clustering



Dimensionality Reduction

e Goal: Seeks toreduce the dimensions of the data without
losing (much) information.

m This is possible if many predictors are correlated with
one another, and therefore redundant.

e Principal Component Analysis is a method for dimension
reduction



What is Principal Component
Analysis (PCA;J

e Goal: PCA seeks to simplify a multi-dimensional (e.g. one with 3+ predictors
(features)) dataset

m Used for feature extraction

m May reveal clusters and help validate clustering results

e Example: We have a dataset with 20 dimensions and it may be interesting to
plot the data in two dimensions

e Results:

m [Loadings: Weights for the original values to get the component scores

= Component Scores: Transformed values for a given point

e prcomp and princomp cando PCAin R; prcomp is the advised function



What are Principal Components?

e Each “principal component” (PC) is an axis that captures
the most variance

® Variance is a measure of the spread of data points;
standard deviation is the square root of variance

s Fach PCis acombination of the original variables scaled
by a coefficient

m Every PC explains some variance

m Each additional PC explains less variance than the
previous one

e New coordinate axes are constrained to be perpendicular,
so the data are de-correlated



PCA Example

e Using scale=TRUE is advisable
e prcomp first transforms the data by centering and scaling
m Centering is done by subtracting the column means

m Scalingis done by dividing the (centered) columns of X by their standard
deviations

iris_data <- iris[, 1:4]

pcaResult <- prcomp(iris_data, scale=TRUE)
summary(pcaResult)

Importance of components:

PC1 PC2 PC3 PC4
Standard deviation 1.7084 0.95600 0.38309 0.14393
Proportion of Variance 0.7296 0.2285 0.03669 0.00518
Cumulative Proportion 0.7296 0.9581 0.99482 1.00000



PCA Example Plots

# First 2 principal # PC variances

components (PC) plot(pcaResult,

plot(pcaResult$x, pch=21, type="11ne", cex.lab=1.5,

bg=c("red", "green3","blue") cex.main=1.5, main="")

lunclass(iris$Species)|) ablineCh=1, 1ty=3,
col="red")

® = S
o o O
_.: gc
o ) _
@) o ® O (|
o o % ~
1—_‘ _:
- M 2 g G
N_.. ° >
) o2 N
| ! | | | | O o

0.0
I




Recovering the Original Data

# Weights (known as loadings)
pcaResult$rotation

PC1 PC2 PC3 PC4
Sepal.Length 0.5210659 -0.37741762 0.7195664 0.2612863
Sepal .Width -0.2693474 -0.92329566 -0.2443818 -0.1235096
Petal.Length 0.5804131 -0.02449161 -0.1421264 -0.8014492
Petal .Width  0.5648565 -0.06694199 -0.6342727 ©.5235971

# Original
iris_datal1l, |

Sepal.Length Sepal.Width Petal.Length Petal .Width
1 5.1 3.5 1.4 0.2

# Transformed
pcaResult$x[1, ]

PC1 PC2 PC3 PC4
-2.25714118 -0.47842383 ©.12727962 ©.02408751

# Recovered
tmp <- t(t(pcaResultix %*% t(pcaResult$rotation)) * pcaResult$scale + pcaResult$center)

tmp[1, ]

Sepal.Length Sepal.Width Petal.Length Petal.Width
5.1 3.5 1.4 0.2



Visualizing PCA Results with Biplots

e Visualizes the magnitude and sign of each feature's contribution to a PC
e Visualizes each observation in terms of PCs

e Closeness equals similarity for points and vectors

biplot(pcaResult, scale=0, cex=.7)
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Correlations between Vectors

Feature to Principal Component Correlations

cor(iris_data, pcaResult$x)

PC1 PC2 PC3
PC4
Sepal.Length 0.8901688 -0.30082989 0.27565767
0.03700602
Sepal .Width -0.4601427 -0.88271627 -0.09361987
-0.01777031
Petal.Length ©.9915552 -0.02341519 -0.05444699
-0.11534978
Petal .Width 0.9649790 -0.06399985 -0.24298265
0.07535950

Feature to Principal Component Contributions

tmp <- abs(pcaResult$rotation)
sweep(tmp, 2, colSums(tmp), "/")

PC1 PC2 PC3 PC4
Sepal.Length 0.2691897 0.27110474 0.41346137 0.15281309
Sepal .Width ©0.1391485 0.66321714 0.14042128 0.07223451



How Many Principal Components
Should be Kept?

e Kaiser criterion

m Retain only principal components that with a variance greater than
1

m The variance of every input variable is 1 (because the
scaling/centering), therefore only retain PCs with “stronger”
variances than individual variables.

m Simple, but less advisable

e Scree Test

» Find the place where the smooth decrease in the variances levels
off

s Multiple users may interpret the data different, unless trained the
same



Getting Help

e Cross-Validated Stats Exchange

m Part of Stack Overflow

m http://stats.stackexchange.com/
e Biostars

m https://www.biostars.org


http://stats.stackexchange.com/
https://www.biostars.org/

